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Abstract—It has been demonstrated recently that diffuse, incoherent multiple scattering of
electromagnetic waves by media composed of randomly positioned, discrete scattering
particles is always accompanied by coherent backscattering and may explain intriguing
opposition phenomena observed for some solar system bodies, in particular peculiar
characteristics of radar returns from icy satellite surfaces. In this paper, we study theoretically
photometric and polarization characteristics of diffuse and coherent backscattering by discrete
random media. The cyclical component of the Stokes reflection matrix at exactly the
backscattering direction is expressed in terms of the ladder component, and the ladder
component is accurately computed by numerically solving the vector radiative transfer
equation. We give formulas expressing the radar reflectivity, radar linear and circular
polarization ratios, and backscattering enhancement factors in the elements of the Stokes
reflection matrix and describe in detail the computational technique used. Assuming that the
scattering medium is homogeneous and semi-infinite and that scattering particles are
polydisperse spheres, we report the results of a comprehensive theoretical survey of the
dependence of the photometric and polarization characteristics of the radar return on the
illumination zenith angle and on the particle effective size parameter and real and imaginary
parts of the refractive index. Copyright © 1996 Elsevier Science Ltd

1. INTRODUCTION

It has been realized recently that diffuse, incoherent multiple scattering of electromagnetic waves
by media composed of randomly positioned, discrete scattering particles is always accompanied
by a phenomenon called coherent backscattering (or weak localization). This phenomenon has been
intensively investigated during the last decade both experimentally and theoretically."”
Furthermore, by comparing observational data with theoretical computations, it has been shown
that coherent backscattering of sunlight by regolithic grains can be responsible for two spectacular
natural phenomena exhibited by Saturn’s rings and some atmosphereless solar system bodies,
namely, the photometric*® and polarization® opposition effects (see also Refs. 7-11). Also, it has
been suggested that diffuse and coherent backscattering of electromagnetic waves might explain
unusual radar returns for icy outer planet satellites, polar caps on Mars and Mercury, and some
terrestrial lava flows.>'*" In this case, multiple scattering may be caused by discrete scatterers in
a relatively transparent matrix, e.g., by particulate rock and/or ice surfaces in air or rocks imbedded
in ice.

The physics of coherent backscattering is basically well understood' and assumes that multiply
scattered radiation reflected by discrete disordered media is composed of two parts. The first part
is the incoherent, diffuse radiation coming from the first-order-scattering contribution and the sum
of so-called ladder terms of the Bethe-Salpeter equation. The second part is the coherent
backscattering peak, which is produced by interference of conjugate pairs of waves scattered
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along the following paths: (1) [source of light] — [particle 1] — [particle 2]— ...— [particle
N — 1] — [particle N]— [detector] and (2) [source of light]— [particle N]— [particle
N — 1}— ... —J[particle 2] — [particle 1] — [detector] (Fig. 1). At exactly the backscattering
direction (viewing direction is exactly opposite to the illumination direction so that the phase angle
o is equal to zero), the interference of the two waves is always constructive regardless of what
particular configuration of particles is involved and causes a distinct backscattering enhancement
of the reflected intensity. The coherent part of the reflected radiation comes from the sum of
so-called cyclical terms of the Bethe-Salpeter equation.'

Owing to its fundamental interference nature, coherent backscattering is a universal physical
phenomenon, accompanies any multiple-scattering process, and occurs for particles of any size,
shape, and refractive index. In other words, it is not necessary to require that scattering particles
be wavelength-sized, as it is sometimes done in applied literature. The angular width of the
backscattering intensity peak can be very small for particles much smaller or much larger than the
wavelength of the incident radiation,*¢ thus often making the peak unobservable in passive remote
sensing observations. However, coherent backscattering almost always affects active remote sensing
measurements with monostatic lidars and radars, e.g., radar observations of planets."”

Because of complicated multiple-scattering processes involved, accurate computations of
coherent backscattering must be based on elaborated theoretical techniques. The conventional
theoretical tool for computing coherent backscattering by discrete random media has been the
diffusion approximation.'”'** However, although the diffusion approximation rather accurately
predicts the angular profile of the backscattering intensity peak, it ignores the first-order-scattering
contribution to the reflected light and, thus, cannot be used to compute the amplitude of the peak,
i.e., the ratio of the intensity at the center of the peak to the incoherent background intensity.
Moreover, in some cases the main physical characteristics of a particulate medium (e.g., particle
size, shape, and refractive index) are not explicit model parameters,” thus making difficult, if at
all possible, comparisons of model computations with results of controlled laboratory experiments.
An additional complexifying factor is that accurate computation of the amplitude and polarization
state of the backscattering peak must explicitly take into account the vector nature of light since
polarization effects have been shown to be extremely important in coherent backscattering.>6?'-%

Reflection of polarized light by a discrete random medium can be described by a 4 x 4 Stokes
reflection matrix consisting of the first-order-scattering, ladder, and cyclical components.* In a
recent publication,? the author has used the reciprocity principle® to derive a rigorous relationship
between the cyclical and ladder components of the reflection matrix at exactly the backscattering
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Fig. 1. Schematic explanation of the interference nature of coherent backscattering.
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direction. This relationship represents one of a very few rigorous results of the vector theory of
coherent backscattering (see, also, Ref. 25) and is very useful in practice owing to the following
three factors. First, in the derivation of this relationship, the vector nature of light has been fully
taken into account. Second, it is well known?”? that the first-order-scattering and ladder
components of the reflection matrix can be rigorously computed by solving the vector radiative
transfer equation'®®3 with one of the well established numerical techniques.’'*¢ Therefore, this
relationship can be used to compute the cyclical component of the reflection matrix at the center
of the backscattering peak and, thus, the amplitude of the peak. Third, particle size, shape, and
refractive index are explicit model parameters, thus facilitating comparisons of theoretical
computations with controlled laboratory experiments. The only approximation involved in this
approach is the assumption that particles forming the discrete random medium are independent
scatterers. For densely packed particles, this assumption may not be quite true. Unfortunately,
rigorous theoretical computations of multiple light scattering by closely spaced wavelength-sized
particles based on directly solving Maxwell’s equations are currently possible only for simplest
scattering configurations composed of a few components (see, e.g., Ref. 37, which shows that
polydisperse, randomly oriented bispheres with widely separated wavelength-sized components
exhibit coherent backscattering). Therefore, the assumption of independent scattering has to be
made if optically thick scattering media composed of a very large number of particles (e.g.,
planetary regoliths) are to be considered. It should be noted, however, that, as calculations reported
in Ref. 38 suggest, the primary effect of spatial correlation among densely packed particles may
be to modify the particles’ forward-scattering behavior, thus indicating that radiative transfer
calculations for the backscattering direction can be reasonably accurate even if particles are densely
packed. Apparently, this explains the excellent quantitative agreement between radiative transfer
computations® and controlled laboratory measurements of coherent backscattering for dense
suspensions of latex microspheres in water.?'%

The approach developed in Ref. 24 was later used in Ref. 12 for computing the photometric and
polarization characteristics of coherent backscattering for semi-infinite media composed of
polydisperse spherical particles. Unfortunately, the low speed of the computer used (a 286-based
PC) restricted the scope of that study to only eight scattering models. A much more powerful
computer available to the author now (an IBM RISC model 37T workstation) makes possible a
comprehensive theoretical survey of the dependence of diffuse and coherent backscattering
characteristics on such basic physical parameters of the scattering medium as particle size
parameter, refractive index, and shape. In this first paper of a series, we focus on the quantities
that describe the photometric and polarimetric characteristics of a radar return, i.e., on the radar
backscattering coefficient and radar polarization ratios.'™® For simplicity, we assume that the
scattering medium is homogeneous and semi-infinite and is composed of polydisperse spherical
particles. In the following section we introduce basic definitions relevant to the vector theory of
diffuse and coherent backscattering and describe in detail the theoretical technique for computing
the ladder and cyclical components of the Stokes reflection matrix for a discrete random medium.
In Sec. 3, we introduce radar definitions and derive formulas expressing the radar backscattering
coefficient, radar linear and circular polarization ratios, and backscattering enhancement factors
in the elements of the Stokes reflection matrix. Section 4 reports results of computer calculations
for a wide range of particle size parameters and real and imaginary parts of the refractive index
and discusses the effect of these parameters on the characteristics of the radar return. The results
of the paper are summarized in the concluding section.

2. POLARIMETRIC DEFINITIONS AND COMPUTATIONAL METHOD

We assume that the scattering medium is homogeneous and optically semi-infinite, has a
macroscopically flat boundary, and is composed of randomly positioned discrete particles. Also,
we assume that the medium is macroscopically isotropic and symmetric, which means that the
particles comprising the medium are randomly oriented and each particle has a plane of symmetry
and/or particles and their mirror counterparts occur in equal numbers. To describe the geometry
of multiple light scattering, we use a right-handed Cartesian coordinate system with the z-axis
directed along the outward normal to the boundary, as shown in Fig. 2. The direction of light
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Fig. 2. On the geometry of multiple light scattering.

propagation is specified by the unit vector m or, equivalently, by the couple (u, ¢), where
u= —cos 3, 3 is the zenith angle measured from the positive z-axis, and ¢ is the azimuth angle
measured from the positive x-axis in the clockwise direction when looking upwards. Note that
u < 0 for upwelling radiation and u > 0 for downwelling radiation. Also, we define u = |u|. To
describe the intensity and state of polarization of a beam of light, we use the local right-handed
orthonormal system formed by the unit vectors n, 3, and ¢ given by

ZXn
=|z><n| M

and
3=¢ xn, (2

where z is a unit vector in the positive z-direction. In other words, the unit vector 8 lies in the
meridian plane of the beam (the plane through the beam and the local z-axis), while the unit vector
¢ is perpendicular to this plane. Note that

n=39 x ¢. (3)

Thus, we use in this paper the so-called forward scattering alignment convention (or wave
coordinates) rather than the backscatter alignment convention (or antenna coordinates).*'*?

Following Refs. 31 and 43, we define, up to a multiplicative constant, the Stokes parameters /,
0, U, and V of a quasi-monochromatic beam of radiation as

I=(EE¥ + E,E}), “4
Q =<(EEf — E,E} ), 6))
U= —<EE} + EEY), 6
V =i(E,E}¥ — E,E}), (7

where E; and E, are the $- and ¢-components of the electric field, respectively, the asterisk denotes
the complex-conjugate value, and angular brackets denote time averaging. Note that sometimes
the 3- and @-components of the electric field are called the vertical and horizontal components
and denoted as E, and E,, respectively.”® The first Stokes parameter, I, is the common intensity,
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while the other three Stokes parameters specify the state of polarization of the beam of light. The

Stokes vector is defined as a four-component column having the Stokes parameters as its
components:

®

oy
It
QR ~

Let the medium be illuminated by a parallel beam of quasi-monochromatic radiation incident
in the direction (uo, @) and characterized by the Stokes vector I, so that I, is the incident energy
flux per unit area perpendicular to the beam. The Stokes vector of radiation reflected by the
medium in the direction (—u, ¢) is given by

1
I(—u, p)= - UoS(i, o, @ — @o)lo, )]

where S(u, o, @ — @) is the Stokes reflection matrix of dimension (4 x 4). Note that the reflection
matrix relates the Stokes parameters of the incident and scattered beams specified with respect to
their local meridian planes rather than with respect to the scattering plane (viz., the plane through
the incident and reflected beams). Since we assume that the scattering medium is macroscopically
isotropic and symmetric, the reflection matrix depends on the difference between the azimuth angles
of the incident and reflected beams rather than on each of the azimuth angles separately.”

The reflection matrix can be decomposed as’

S(u, to, @ — @o) = S'(1, o, @ — @o) + S"(H, to, @ — @o) + S, o, @ — @0), (10

where 1 denotes the first-order-scattering component, L denotes the ladder component, and C
denotes the cyclical component. The first-order-scattering and ladder components of the reflection
matrix are rather slowly varying functions of the reflection direction, and their sum describes the
diffuse, incoherent background of the reflected radiation. The cyclical component of the reflection
matrix S(u, po, @ — @) describes the effect of coherent backscattering, which is superposed on the
diffuse background. Unlike S'(u, o, @ — @0) and S*(u, 1o, @ — @o), SS(u, 1o, ¢ — @o) deviates from
zero only in the nearest vicinity of the backscattering direction given by (—u, @) = (— o, @o + 1)
and is zero outside the coherent backscattering peak. Both S'(u, o, @ — o) and S'(u, po, @ — @o)
can be found by solving numerically the vector radiative transfer equation (see below). The
computation of the cyclical component S(u, o, @ — @) for any u, uo, and ¢ — @, is a much more
complicated problem which has been rigorously solved only for the case of Rayleigh scattering (i.e.,
for particles much smaller than the wavelength of the incident radiation)® and still awaits a general
solution for particles of arbitrary size, shape, and refractive index. However, the rigorous
relationship derived in Ref. 24 enables one to use the precomputed ladder component for
calculating the cyclical component at exactly the backscattering direction, i.e., the matrix
S0, po, 7). Specifically,

Sﬁ(ﬂﬂ’ /"'Oa 1'[) S{-‘Z(ﬂO, #0, TE) 0 0
SL (/"0’ Ho, n) SC(#O’ Ho, 7[) 0 0
SC , , — 12 22 , 11
(o, pa, ) 0 0 S5 (o, po, ©) S50, po, T) (1D
0 0 — S5(po, po, ) Sa(po, pho, T)
where
Sti(to, po, ) = 5[STi(tho, Ho, ™) + St (o, o, T) — S5(pho, o, T) + Sia(tho, Ho, )], 12)

S5:(po, po, 1) = 3[STi (o, to, ™) + SH(pho, Ho, M) + S5(Ho, po, ) — Sia(po, po, M), (13)
SSCS(#Os ”09 7T) = %[ - S{-I(/“‘O’ ﬂo, T[) + S%Z(ﬂoa #09 7[) + S§'3(”0’ ﬂoa 71:) + Sh(uoa ﬂoa 7"")]’ (14)

Sa(po, po, ™) = 3[Sti (o, pro, ™) — SH(po, to, T) + Sii(ho, po, T) + Sia( o, o, ™). as)
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Thus, although the complete computation of the angular profile of the coherent backscattering
peak is still impossible, the combined use of the vector radiative transfer theory and Eqgs. (10)—(15)
provides the full specification of the reflected radiation outside the peak [Eq. (10) with
S(u, to, @ — o) = 0] and at exactly the center of the backscattering peak. Note that for a
macroscopically isotropic and symmetric medium, the first-order-scattering and ladder components
at exactly the backscattering direction have simple diagonal and block-diagonal structures,
respectively [see Eqgs. (18), (32), (36), and (42) below]:

S'(o, po, m) = diag[Si; (o, po, T); S32(o, to, T); Sis(Ho, Ho, T); Sia(pho, Ho, T)], (16)
Sh(/‘or #09 71') S{-Z(#O’ #Oa 7t) 0 0
Sta(to, po, ®)  SH(Hho, Ho, T) 0 0
SL s s = 12 ) ’ 22 ) ’ . 17
(o o, 7) 0 0 Sk Clos oy 1) SiCpto, oy ) |~ 17
0 0 — S5(to, po, ®)  Siu(pho, po, )

As was mentioned above, the sum of the first-order-scattering and ladder components of the
reflection matrix, R(u, po, @ — @0) = S'(1, po, @ — @) + S*(u, o, @ — @o), describes the reflected
radiation outside the backscattering peak (i.e., the diffuse background) and can be computed by
solving numerically the vector radiative transfer equation. de Haan et al* have shown that a
convenient and efficient way of treating the azimuthal dependence of the diffuse reflection matrix
R(u, po, ® — @) is to expand it in a special Fourier series

R(Ks o, @ = 90) = 3, (2 = 3n){{(E + DIR"(t, i) E + D)

+(E — D)R"(u, po)(E — D)Jcos m(¢ — @o) + [(E — D)R"(1, o) (E + D)

—(E + D)R"(1, o) (E — D)Jsin m(¢ — o)}, (18)

where
E = diag[l, 1, 1, 1], (19)
D = diag[l, 1, — 1, — 1], (20)

and the upper summation limit M depends on the desired accuracy of computations. We compute
the Fourier components of the diffuse reflection matrix R”(u, o) for a semi-infinite homogeneous
medium by solving numerically the Ambartsumian’s nonlinear integral equation”*

(1 + HR™(, o) = 5 Z7(— . o)

1 1
+% I f du’R"(pu, p)Z" (', o) + % Ho f duw'Z"(—p, — p)R"(W', po)
0 0

1 1
+WW‘°J j dp'dp"R™(u, p)Z"(p', — p")R"(1", o). @1
0 JO

This equation is a consequence of the invariance of the matrix R(u, 4,  — @) when an
infinitesimally thin layer is added on top of a semi-infinite medium and can be derived from Eq.
(3.51) of Ref. 31 by zeroing its left-hand side. In Eq. (21), w is the albedo for single scattering and
(4 x 4) matrices Z"(u, u’) are Fourier components of the phase matrix Z(u, u’, ¢ — ¢’). The phase
matrix describes the angular distribution and the change of the polarization state of light singly
scattered by a small-volume element and relates the Stokes parameters of the incident and scattered
beams specified with respect to their own meridian planes.'®*
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The Fourier components of the phase matrix are given by*

Z"(u,u’) =(—1y" szax P, (w)SP;,(w), u,uel[—1,1], (22)

s=m

where the matrices P, («) are defined as

Po(u) 0 0 0
0 an+(u) an—(u) O

BO=1 0 Plw PL.w 0 =
0 0 0 Pio(u)
and
P, (u) =3[P, _»(u) £ Poo(u)), (24)
and P:,(u) are generalized spherical functions.” The matrices S* have the form
a, b} 0 0
S = b a 0 0 25)

0 0 a b
0 0 —-b g

The elements of these matrices are the coefficients that appear in the following expansions:

Smax

F(®) = :;0 a; Py (cos ©), (26)

Fx(©) + Fo(©) = 3 (@ + a)Pucos ©) @7)
F(®) — Fu(®) = z (a5 — a)P;_s(cos ©), (28)
Fu(©) = z @i Pis(cos ©), 29)

Fu(®) = ; bi Piy(cos ©), (30)

Fu(®©) = 3 biPi(cos ©), 31)

s=2

where © is the scattering angle (angle between the incident and scattered beams) and F;(®) are
elements of the scattering matrix:

Fu(@) Fa®) 0 0
| Fa@® Fa@ 0 0

F@)= 1" 0 Fs(@) Fu(®) (32)
0 0 — F,(0) Fu(®)

The (1,1) element of the scattering matrix is called the scattering phase function and is normalized
to unity:

%4[ d® sin OF,(0) = 1. (33)
0

In contrast to the phase matrix Z(u, u’, ¢ — ¢’) which is referenced to the local meridian planes
of the incident and scattered beams, the scattering matrix relates the Stokes parameters of the
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Fig. 3. On the relationship between the scattering and phase matrices.

incident and scattered beams specified with respect to the scattering plane, i.e., the plane through
the two beams. The relationship between the two matrices is given by*

Zn, ') = Z(u, u', ¢ — ¢') = L(62)F(O)L(01), (34)
where the (4 x 4) rotation matrix is defined as
1 0 0 0
0 cos20 sin2e 0
L(o) = 0 —sin2¢ cos2¢ 0]’ (33)
0 0 0 1

and the angles g, and o, are shown in Fig. 3. The block-diagonal form of the scattering matrix
of Eq. (32) follows from the assumption that the scattering medium is macroscopically isotropic
and symmetric.* Note that

Flz(O) = Flz(ﬂ) = F34(0) = F34(TC) = 0, (36)
Fy3(0) = F»(0), Fu(n) = — Fx(n), 37
and*
F44(7'C) = F”(n) - 2F22(7I). (38)
Furthermore, for spheres,
F22(®) = Fl|(®), (39)
F44(®) = F;;(@). (40)

Equation (26) is the standard expansion of the phase function in Legendre polynomials.*
The computation of the diffuse reflection matrix R(u, to, @ — @o) consists of the following four
major numerical steps:

(1) Calculation of the single-scattering albedo w and the expansion coefficients appearing in
expansions (26)—(31) for a given particle model. Fast numerical techniques for computing
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the expansion coefficients for polydisperse spherical particles based on Mie theory are
discussed by de Rooij and van der Stap.®

(2) Computation of the Fourier components of the phase matrix via Egs. (22)(25). Efficient
recurrence relations for computing the generalized spherical functions are given by de Haan
et al.*

(3) Computation of the Fourier components of the matrix R(u, po, ¢ — @o) by solving
numerically the Ambartsumian’s nonlinear integral equation. Using a Gaussian quadrature
formula for numerical evaluation of integrals in Eq. (21), we obtain a system of nonlinear
algebraic equations

w R
e+ Rt ) = 3 Z(— s ) + 5 1 3 iR, )2tk 1)
k=1

w s
+5 Wi Z wiZ"(—pi, — e )R™(pic, 1)
k=1

Ng Ng

+wpiy Y. Y wewe R, ) Z (e, — p)R™ (e, 1), (41)

k=1k'=1

where 4 and w, (k =1, ..., Ng) are Gaussian division points and weights on the interval
[0, 1], respectively. For single scattering albedos w not equal to unity, this system is solved
by the method of simple iterations. For conservatively scattering particles (w = 1), the
method of simple iterations does not provide a converged solution” and must be
supplemented by a special procedure developed by Dlugach and Yanovitskij* in the scalar
case (i.e., when polarization of multiply scattered light is ignored) and extended by de Rooij*
to the vector case.

(4) Calculation of the total diffuse reflection matrix R(u, to, ¢ — @o) by evaluating the Fourier
series of Eq. (18).

We use several simple numerical recipes to significantly enhance the efficiency and accuracy of
the computer code. First, we ensure energy conservation by renormalizing the zeroth Fourier
component of the phase matrix as suggested by Hansen.*' Second, we employ symmetry relations
for the Fourier components of the reflection matrix,** thereby saving nearly 50% of CPU time.
Third, we diagonalize the matrices P, (x) and use the supermatrix approach as described by de
Haan et al.*

By expanding the Ambartsumian’s nonlinear integral equation in a Newmann order-of-scattering
series over w and taking into account Eqgs. (34)—(38), it is easy to show that the first-order-scattering
component of the reflection matrix at exactly the backscattering direction is given by*

w

8qu(—uo, Mo, )

Sl(#o’ Ho, 71.') =
w
= % F(n)
= _8%; diag[F\(n); Fu(n); Fi(n); Fu(n)]

= 4 diaglFu(n); Fa(n); — Fa(m); Fi(r) — 2Fa(r)]. @

Furthermore, for spherical particles

S'(po, po, 1) = diag[S1i (o, po, m); Sti(po, o, m); — Sii (o, o, ®); — Sy (o, Ho, ™))
v
840

diag[F.\(n); Fu(r); — Fu(n); — Fu(n)] (43)
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[cf. Egs. (39) and (40)]. The ladder component of the reflection matrix for exactly the backscattering
direction is computed as

SL(”'O’ Ho, 7I) = R(ﬂoa Ho, n) - Sl(ﬂo’ Ho, 11'). (44)

Finally, the cyclical component for exactly the backscattering direction is computed using Egs.
(11)~(15).

The calculational method described and the corresponding computer code are extremely efficient
so that the CPU time for calculating one scattering model on an IBM RISC model 37T workstation
is of the order of 1 min. The computer code is available from the author upon request (e-mail:
crmim(@nasagiss.giss.nasa.gov).

3. RADAR REFLECTIVITY, POLARIZATION RATIOS, AND ENHANCEMENT FACTORS

In most modern radar observations, the transmitted radar signal is fully linearly or circularly
polarized and two parallel receiving channels are used to measure radar returns in the same linear
(circular) polarization as transmitted and simultaneously in the opposite sense.”” The Stokes
representation of polarization introduced in the previous section is not quite suitable to describe
situations involving radar measurements. Therefore, it is convenient to introduce two other
representations, so-called modified Stokes (MS) and circular-polarization (CP) representations,
given by's#

I %(I + Q)
reo (b1 2020 gy @5)
|24 vV
and
Q+iU
=t 177 | =aL (46)
Q—iU
respectively, where
L4000
SR
0 0 01
0 1 i 0
i1 0
01 —i 0
Conversely, we have
I=B"T, 49)
I=A"I¢, (50)
where
1 1 00
e b 0o
0 0 01
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01 10
10 01

AM=1_i0 0 i) (52)
01 -1 0

Denoting the reflection matrix in these two new representations of polarization by M(u, uo, ¢ — ¢o)
and C(u, o, @ — @), respectively, and using Eqgs. (9), (45), (46), (49), and (50), we easily derive:

M(u, to, @ — @o) = BS(u, o, ¢ — o)B™! (53)

and®

C(u, po, @ — @o) = AS(u, o, @ — Po)A™". (54)

These two simple formulas can be used to compute the matrices M(u, uo, ¢ — @) and
C(u, po, @ — o) after the Stokes reflection matrix S(u, o, @ — o) has been computed as described
in the previous section.

In accordance with Refs. 18, 41, and 52, we define the radar backscattering coefficients in the
modified Stokes and circular polarization representations as

™ (o) = 4usM(po, po, ™) = 4u3BS(po, plo, m)B~! (55)
and
6 (o) = 4u5C(o, o, ™) = 4u3AS(po, po, M)A, (56)

respectively. Consider first the case when the transmitted radar signal is linearly polarized in the
vertical direction so that IS = [I,,, 0, 0, 0]7, where T denotes matrix transpose. The vertically and
horizontally polarized components of the received signal at exactly the backscattering direction are
described by the co-polarized and cross-polarized radar reflectivities given by the (1,1) and (2,1)
elements of the matrix e™5(y,), respectively:

0w (o) = 011° (o), (57)

Ow(o) = 021 (fo)- (38)

The linear polarization ratio is defined as the ratio of the cross-polarized to the co-polarized radar
reflectivities:

o (o)
ow(po) (59)

Similarly, for a transmitted radar signal with right-circular polarization, I§* = [0, Ii*, 0, O], the
same-circular and opposite-circular radar reflectivities and the circular polarization ratio are given
by

p(po) =

oscio) = 05 (o), (60)

Goc(te) = o5 (1), 61)
and

peto) = %{:3 , ©62)

respectively. Assuming spherical scatterers and using Eqgs. (10)(15), (17), (43), (55), and (56), the
radar reflectivities can be expressed in the elements of the Stokes reflection matrix as follows:

aw(uo) = 4“%[8'111(”0’ ”Oa 7[) + Sh(#o, l‘to, 75) + 2S:'2(#01 ”09 TC) + S%Z(ﬂ'% /‘0’ 1!)], (63)
ahv(ﬂo) = 2#(2;[‘3}‘1(”'0’ Mo, n) - S%Z(uo’ Ho, 7[) - S;-J(ﬂoa Ho, 7[) + Sh(#o’ Ho, ﬂ)], (64)

USC(”O) = 4”3[5‘}‘](#09 #0’ 7:) + S}J(#O’ ﬂos 73)], (65)
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GOC(”'O) = zﬂg[zsll(ﬂo, Ho, 71") + S{.l(l‘l‘oa Ho, 7'[) + S%Z(ﬂoa Ho, 7[) - S;":,([lo, Ho, TI) - }4(#0’ Ho, 7T)]' (66)

In the vicinity of the exact backscattering direction but outside the coherent backscattering peak,
the cyclical contribution to the radar reflectivities vanishes, while the diffuse contribution is given
by

08T (po) = 4p3[ S} (Ho, po, ™) + 3STi (o, po, ) + St(Ho, o, T) + 4S5 (pho, o, M), (67)
ag:lﬂ(ﬂo) = 2#3[‘5}—1(”‘0’ Ho, n) - S;'z(ll—o, Ho, ﬂ)], (68)
088 (o) = 25[Sti (Ho, o, ©) + Sia(po, po, M), (69)
038 (uo) = 213[21, (po, pro, ™) + Sti(Ho, Ho, ©) — Sia(Ho, po, T)]. (70)
The corresponding diffuse polarization ratios are
diff
diff, _ Ohy ()
/‘L (I“'O) - a.‘c’l‘ilﬂ'(m) (71)
and
diff _ 03¢ (o)

We also define backscattering enhancement factors as ratios of full radar reflectivities to respective
diffuse radar reflectivities:

Gti) = Tl (713)

) = Ze) (74)

osc( )
o (o)’ 7

{sc(mo) =

o8T(ym) 70

The backscattering enhancement factors possess several interesting properties.’” As follows from
Egs. (65), (69), and (75), the same-circular enhancement factor for spherical particles is identically
equal to 2:

Coc(o) =

{sc(po) = 2. W)

This identity is a direct consequence of Eq. (43) and, in general, does not hold for nonspherical
particles.” Using the Newmann order-of-scattering expansion of Eq. (21) in powers of w and taking
into account Eq. (44), it is easy to show that with decreasing single scattering albedo the ladder
component of the Stokes reflection matrix S*(u, po, ¢ — @o) decreases and ultimately vanishes.
Therefore, it follows from Egs. (63), (66), (67), (70), (73), and (76) that

lim (v (po) = Lim {oc(po) = 1. (78)

Also, in grazing incidence and reflection (i.e., in the limit 4 — 0 and p, — 0), the diffuse reflection
matrix R(y, po, @ — @o) becomes equal to the first-order-scattering component S'(u, po, @ — @o)
(see Sec. 15.3.5 of Ref. 47), which means that the ladder component S“(u, o, @ — @) vanishes [cf.
Eq. (44)]. As a consequence, we easily derive from Egs. (63), (66), (67), (70), (73), and (76):

,HTO L) = ,}fi“o oc(mo) = 1. (79)

Finally, useful upper and lower bounds for the backscattering enhancement factors can be derived
by employing the general inequalities that must be satisfied by any Stokes transformation matrix
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of the block-diagonal form given by Eq. (17) (see Sec. 3.3 of Ref. 53). Applying these inequalities
to the matrix S*(uo, to, 1), We easily derive from Egs. (63), (64), (66), (73), (74), and (76):*

1 < ) €2, (80)
0 < fwlmo) <2, (81
0 < foc(p) < 2. (82)
Similar inequalities and asymptotic limits can be derived for the polarization ratios:
Hpoi(fo) 2 0, (83)
i pa(o) = i, g} = 0, (84)

where i, stands for uc, uc, uf™, or udf. It should be emphasized, however, that Eq. (84) is a specific
property of spherical particles and does not hold for nonspherical scatterers.

4. CALCULATIONS AND DISCUSSION

All numerical results reported below have been computed for polydisperse spherical particles
using the standard gamma distribution of particle radii given by

n(r) = Cr- exp< _ a_'b> (85)

Here, n(r)dr is the fraction of particles with radii from r to r + dr, a and b are formal model
parameters, and

C=—2L1 (@) (86)

1—-2b
(%)
This choice of the constant C ensures the normalization

f ) dra(r) = 1. 37

The gamma distribution is very convenient in theoretical computations since its formal parameters
a and b coincide with the effective radius r. and effective variance ver of the distribution,
respectively, so that™

T = é J drrer’n(r) = a, (88)
0

Vo= or f dr(r — raynrn(r) = b. (89)
0

off

In Egs. (88) and (89), G is the average particle geometric cross-sectional area given by
G= J drarin(r). (90)
0

As follows from the electromagnetic theory,* all scattering properties of polydisperse particles
depend on the effective radius r.s and the wavelength of the incident radiation 4 only through their
ratio or, more specifically, through the effective size parameter defined as x.r = 2nres/A. Figure 4
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shows the single-scattering albedo w vs x.x (0 < x.¢ < 30) for particles with v = 0.1, the real part
of the refractive index Re(m) = 1.2, 1.4, 1.6, 1.8, and 2, and the imaginary part of the refractive
index Im(m) = 0, 0.002, 0.01, and 0.3. Note that for nonabsorbing particles [Im(m) = 0], w is
identically equal to 1. Similarly, Fig. 5 shows the backscattering phase function Fy,(n) and Fig. 6
displays the asymmetry parameter of the phase function defined as

{cos @) =1 f d(cos ®)F;;(®)cos O = % . 91)

The asymmetry parameter is a quantitative measure of the single-scattering anisotropy and
is positive for predominantly forward-scattering particles, negative for backscattering particles,
and vanishes for isotropic scattering [F,(®)= 1] and symmetric phase functions with
F“(TE - @) = F11(®)

It is seen from Figs. 4-6 that the dependence of the three single-scattering characteristics on the
imaginary part of the refractive index is rather simple. Indeed, w always decreases, Fy(w) almost
always decreases, and {cos ®) almost always increases with increasing absorption. In the Rayleigh
limit (x.x = 0), the asymmetry parameter vanishes, the backscattering phase function is equal to
1.5, and the single-scattering albedo is equal to zero [except for Im(m) = 0] regardless of the real
part of the refractive index. Of the three single-scattering characteristics, w is least sensitive to the
real part of the refractive index. In contrast, for nonabsorbing particles with x4 =7 the
backscattering phase function F,(n) increases by more than two orders of magnitude as Re(m)
increases from 1.2 to 1.6. The backscattering phase function is also most sensitive to increasing
absorption. For particles with Re(m) = 1.8 and x.x = 30, Fi;(n) drops by more than two orders
of magnitude with increasing imaginary part of the refractive index from 0 to 0.3, thus
demonstrating the strong suppressing effect of absorption on glory. The minimum in the
backscattering phase function curves for Im(m) = 0, 0.002, and 0.01 shifts towards smaller effective
size parameters and becomes shallower with increasing Re(m). The minimum disappears for
Im(m) = 0.3 as the real part of the refractive index becomes smaller than about 1.5. For
Im(m) = 0.3 and effective size parameters greater than about 8, the backscattering phase function
and the asymmetry parameter curves become essentially independent of x.s. Importantly, our
computations show that an increase of the backscattering phase function with increasing x.q is not
necessarily accompanied by a decrease of the asymmetry parameter, as it is sometimes implied
(e.g., Ref. 54).

Plates 1-8 are composed of color contour diagrams of the photometric and polarimetric
characteristics of a radar return as functions of the effective size parameter x.s and the cosine of
the illumination zenith angle u, for the same values of the real [Re(m) = 1.2, 1.4, 1.6, 1.8, and 2]
and imaginary [Im(m) = 0, 0.002, 0.02, and 0.3] parts of the refractive index. Plate 1 and analogous
computations for the copolarized radar reflectivity o., (not shown) demonstrate that for all x.x and
Re(m), the effect of increasing imaginary part of the refractive index on both a,, and goc is
significant and results in strongly reduced reflectance. Figures 4, 5, and 6 suggest that this effect
is caused by three factors. First, the contribution of n times scattered photons to the reflected
intensity is proportional to the nth power of the single scattering albedo.”” Therefore, the decrease
of w with increasing absorption (Fig. 4) greatly decreases the contribution of multiply scattered
light to the reflectivity of the medium. Second, increasing Im(m) almost always results in
greater values of the asymmetry parameter (Fig. 6), thus making the phase function more
forward-scattering. Therefore, an incident photon has a greater probability of being scattered in
the forward direction and needs to undergo more scattering events to exit the medium. This
increases the photon scattering path length inside the medium and, thus, the probability that the
photon will be absorbed before it escapes the medium. Third, increasing Im(m) strongly suppresses
the backscattering phase function (Fig. 5) and, thus, the first-order-scattering component of the
(1,1)-element of the Stokes reflection matrix [Eq. (43)]. This third factor is especially important for
large particles with a large real part of the refractive index and/or for nearly grazing incidence
(small y), in which cases the relative contribution of the first-order-scattering component to the
total reflectivity for nonabsorbing particles is significant and sometimes dominant. The first two
factors dominate for particles with smaller values of Re(m) and for nearly perpendicular
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illumination directions, in which cases the first-order-scattering contribution to the total reflectance
for nonabsorbing particles is relatively weak and reflectivity is dominated by the multiple-scattering
contribution.

Plate 2 shows that the linear polarization ratio of the diffuse background pf(u,) always
decreases with increasing absorption. According to Eq. (68), the first-order-scattering contribution
to o (u,) for spherical particles is identically equal to zero. Therefore, the decrease of pi(u,) with
increasing Im(m) might be explained by the decreased contribution of multiple scattering to o’ (o).
However, this simple qualitative explanation does not quite work in the case of the circular
polarization ratio of the diffuse background udf(u) (Plate 3), even though the first-order-scattering
contribution to g&f(u) is also equal to zero [Eq. (69)]. Indeed, diagrams for Re(m) = 1.2 and 1.4
in Plate 3 show that ud(u,) can first increase with increasing imaginary part of the refractive index
and then rapidly decrease. This different behavior of p{*(uo) and p™(uo) with increasing absorption
can only be explained by the fact that different elements of the Stokes reflection matrix are involved
and that the process of multiple scattering of polarized light is extremely complicated, thus
necessitating the use of a rigorous approach in theoretical computations. Our calculations displayed
in Plates 2 and 3 and pertaining to a representative, albeit restricted, domain of effective size
parameters and real and imaginary parts of the refractive index strongly suggest that u{"(uo) is
always less than or equal to 1,

u (o) < 1, 92)
whereas pd™(u) can well exceed 2 and is always greater than or equal to u{(u):
(o) < pE (o). (93)

Unfortunately, we were unable to prove the inequalities of Eqgs. (92) and (93) analytically.

The full linear and circular polarization ratios p (1) and pc(uo) are shown in Plates 4 and 5,
respectively, and exhibit a more similar behavior than the corresponding diffuse ratios. In
particular, the diagrams for Re(m) = 1.2 and 1.4 show that both p; (1) and pc(po) can first increase
with increasing absorption and then rapidly decrease. Using formulas of Sec. 3, we can express
the full polarization ratios in terms of the diffuse polarization ratios and the enhancement factors
as follows:

v (o)

(o) = ) (o), (94)
= Cﬁ(&) diff -
pc(po) = Toc(to) € (Ho)- 93)

The enhancement factor {sc(uo) for spherical particles is identically equal to 2 [Eq. (77)], while the
enhancement factors (v (), {m(io), and {oc(io) are shown in Plates 6, 7, and 8, respectively, and
exhibit a rather complicated dependence on the effective size parameter and real and imaginary
parts of the refractive index. In view of Egs. (77), (82), and (95), we conclude that the
opposite-circular enhancement factor is always smaller or equal to the same-circular enhancement
factor,

Coc(o) < Lsc(po), (96)

so that coherent backscattering always increases (or at least does not change) the circular
polarization ratio:

BEF (o) < pc(po). 97

In contrast, coherent backscattering can either increase or decrease the linear polarization ratio
depending on the ratio of the cross-polarized to co-polarized enhancement factors. Plates 6 and
7 show that this ratio can well be less than unity, especially for absorbing particles and/or grazing
illumination directions. Thus our accurate radiative transfer computations show the limited validity
of the conclusion of Ref. 9 that coherent backscattering always decreases the linear polarization
ratio. The computations displayed in Plates 4 and 5 strongly suggest that the inequality of Eq. (92)
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applies also to the full linear polarization ratio and that uc(u,) is always larger than or equal to
p(po):

(o) < 15 pi(po) < (o). (9%)

Again, we were unable to prove these inequalities analytically.

As was mentioned in the Introduction, the diffusion approximation ignores the first-order-scat-
tering contribution to the reflected light and, thus, predicts the copolarized enhancement factor
exactly equal to 2. As follows from Egs. (63), (67), and (73), the copolarized enhancement factor
is never equal to 2 since, for real scattering particles, Si,(uo, o, @) is never exactly equal to zero
but rather is a positive number. Therefore, we have to conclude that for real scattering particles
{w(uo) is always smaller than 2. The degree of deviation of the copolarized enhancement factor
from the value 2 strongly depends on the value of the backscattering phase function [Egs. (43),
(63), (67), and (73)]. For nonabsorbing particles with Re(m) = 1.2 and effective size parameters in
the range x.s € [2, 20] and for nearly normal incidence, S},(to, o, 7) is small because Fy,(r) is small
(Fig. 5), whereas the multiple-scattering contribution is large. As a result, the deviation of the
copolarized enhancement factor from the value 2 is small (Plate 6, upper left diagram). In contrast,
the (much) larger values of the backscattering phase function for nonabsorbing particles with larger
refractive indices (Fig. 5) cause co-polarized enhancement factors significantly smaller than 2 (Plate
6, leftmost diagrams). The multiple-scattering contribution to the Stokes reflection matrix decreases
with increasing angle of incidence, thus causing {w (i) to be a monotonically increasing function
of po in most cases. Increased absorption also decreases the multiple-scattering contribution and,
therefore, can strongly reduce {..(u) [Plate 6, diagrams for Im(m) = 0, 0.002, and 0.01]. However,
another effect of increasing the imaginary part of the refractive index is to significantly decrease
the backscattering phase function (Fig. 5) and, thus, the first-order-scattering contribution [Eq.
(43)]. Plate 6 shows that an interesting combined result of the two effects of increasing absorption
can be an increase of the copolarized enhancement factor as Im(m) increases from 0.01 to 0.3.

Plate 7 shows that the cross-polarized enhancement factor (n(uo) always increases with
decreasing multiple-scattering contribution, i.e., with increasing absorption and/or decreasing uo,
and can reach values very close to 2. In contrast, the opposite-circular enhancement factor can
either decrease or increase with increasing Im(m) (Plate 8). It should be noted that accurate
numerical computations of the cross-polarized enhancement factor (i (1) become difficult for
strongly absorbing particles and/or for grazing illumination directions since both the nominator
and the denominator in the right-hand side of Eq. (74) do not have a first-order-scattering
component and become very small with vanishing multiple-scattering contribution. Therefore, such
computations require the use of at least double-precision floating point variables. The ripple in
contour lines seen in rightmost diagrams of Plate 7 may indicate that even the accuracy of
double-precision variables is not quite sufficient for highly absorbing particles with Im(m) = 0.3.
In such cases the general inequality of Eq. (81) becomes an important check of numerical accuracy.
Interestingly, although the general inequalities of Egs. (81) and (82) do not rule out values of {u (1)
and {oc(po) less than unity, our practical computations suggest that 1 may be a more rigorous lower
boundary for the cross-polarized and opposite-circular enhancement factors. Unfortunately, we
have not been able to prove this analytically.

5. SUMMARY AND CONCLUSIONS

As was mentioned in the Introduction, Egs. (11)—(15) represent one of very few rigorous results
of the vector theory of coherent backscattering by sparsely distributed, independently scattering
particles. In conjunction with accurate numerical solutions of the vector radiative transfer equation,
they are essentially the only source of benchmark theoretical results for particles of any size, shape,
and refractive index and can be used in analyzing results of controlled laboratory measurements
and for checking the validity of approximate theoretical methods, first of all the diffusion
approximation. For example, the accuracy of the values {.(1)=1.88, {(w(l)=1.17, and
u$f(1) = 0.42 obtained by Stephen and Cwilich®® for the case of conservative (w = 1) Rayleigh
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scattering using the diffusion approximation can be checked versus the accurate numbers
Lw(1) = 1.7521, {n(1) = 1.1201, and u{f™(1) = 0.5167 obtained in Ref. 39.

In this paper, we have used Egs. (10)—(15) along with numerically accurate solutions of the vector
radiative transfer equation to perform a theoretical survey of diffuse and coherent backscattering
for a wide range of particle size parameters and real and imaginary parts of the refractive index
and discussed the effect of these parameters on the photometric and polarization characteristics
of the radar return. The results of this survey are summarized in Sec. 4. Not surprisingly, we have
found that in many cases the polarimetric characteristics of the radar return are complex functions
of the scattering medium parameters. This complexity results from the complexity of the process
of multiple scattering of polarized radiation and necessitates the use of elaborated techniques, like
the one employed in this study, in theoretical computations.

Equations (64), (65), (68), and (69) show that the linear and circular polarization ratios (both
diffuse and full) for a discrete random medium composed of spherical particles would be equal to
zero in the absence of multiple scattering. Therefore, it is multiple scattering that produces nonzero
polarization ratios for a medium composed of spherical scatterers. It is important to emphasize
that multiple scattering can strongly depolarize even the diffuse background (Plates 2 and 3);
therefore, it is not true that the only cause of depolarization is coherent backscattering—the
statement that can be found in some applied papers. What coherent backscattering can do is to
significantly change the polarization ratios of the diffuse background: increase the circular
polarization ratio and either increase or decrease the linear polarization ratio. Although the aim
of this paper is not to apply the theory to analyze some real measurements, our computations
demonstrate that the multiple scattering mechanism can indeed be relevant to radar observations
of snow- and ice-covered planetary surfaces (cf. Ref. 17).

It is important to note that multiple scattering in optically thick media is not the only mechanism
producing nonzero backscattering polarization ratios. Another mechanism which can work even
in the absence of multiple scattering is single scattering by nonspherical particles. That mechanism
was studied in Ref. 46 for randomly oriented nonspherical particles and in Refs. 61 and 62 for
fully and partially aligned nonspherical particles. Interestingly, despite the different nature of
depolarization, the inequalities of Egs. (83), (92), and (93) also apply to single scattering by
randomly oriented nonspherical particles provided that the particles have a plane of symmetry
and/or particles and their mirror counterparts occur in equal numbers.” Therefore, it may be
difficult in practice to conclude which of the two mechanisms is primarily responsible for observed
depolarization.

For simplicity, we have ignored in this study the effect of spatial correlations of densely packed
particles and the fact that in densely packed media scattering particles can be in the near-field zone
of each other, thus questioning the applicability of Mie theory to computing their single-scattering
properties. As we have already mentioned, calculations of Ref. 38 suggest that the primary effect
of spatial correlations may be to modify the particles’ forward-scattering behavior, thus indicating
that backscattering radiative transfer calculations can be reasonably accurate even for densely
packed particles. Also, the results of Ref. 56 may indicate that the near-field effects are not
necessarily appreciable, especially if the distance between the centers of wavelength-sized particles
is greater than two times their diameter. One way to take into account the near-field effects is to
include additional, range-dependent terms in the transverse scattered fields in computing the
Mueller scattering matrix and to use this modified Mueller matrix in the radiative transfer
equation.” Another way of dealing with this problem is to solve Maxwell’s equations directly for
a configuration consisting of a very large number of densely packed scatterers by using the T-matrix
approach®® or the discrete dipole approximation.® Although the second approach can be more
accurate, it is much more complicated and computer intensive. In any case, future investigations
should demonstrate whether or not the near-field effects can change the photometric and
polarization characteristics of coherent backscattering significantly.

In this first paper of a series, we have only considered optically semi-infinite media composed
of spherical particles. Furthermore, we did not consider the practically important case of
unpolarized incident radiation relevant to passive planetary observations in the visible and near
infrared spectral regions. In a forthcoming paper, we plan to examine the effects of finite optical
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thickness and particle nonsphericity, and also to study reflectance characteristics of a particulate
medium illuminated by unpolarized light.
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